TORUS AND Z/p ACTIONS ON MANIFOLDS

نویسنده

  • ADAM S. SIKORA
چکیده

Let G be either a finite cyclic group of prime order or S. We show that if G acts on a manifold or, more generally, on a Poincaré duality space M , then each term of the Leray spectral sequence of the map M×GEG → BG satisfies a properly defined “Poincaré duality.” As a consequence of this fact we obtain new results relating the cohomology groups of M and M. We apply our results to study group actions on 3-manifolds. 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Four-manifolds which admit Zp ×Zp actions

We show that the simply-connected four-manifolds which admit locally linear, homologically trivial Zp ×Zp actions are homeomorphic to connected sums of ±CP 2 and S × S (with one exception: pseudofree Z3 × Z3 actions on the Chern manifold), and also establish an equivariant decomposition theorem. This generalizes results from a 1970 paper by Orlik and Raymond about torus actions, and complements...

متن کامل

T"-Aetions on Holomorphically Separable Complex Manifolds*

Here we consider complex manifolds M which are holomorphically separable, i.e., the global holomorphic functions (9 (M) separate the points of M. We investigate T n (n-torus) actions on M, where T"={(ei~ ei~ 0eN"}, and n is the complex dimension of M. We assume that the action is effective, i.e., if 0ET ~ is nonzero, then there exists z e M with O.z+z. Our final assumption on the action is one ...

متن کامل

Fixed-Point Free Circle Actions on 4-Manifolds

This paper is concerned with fixed-point free S-actions (smooth or locally linear) on orientable 4-manifolds. We show that the fundamental group plays a predominant role in the equivariant classification of such 4-manifolds. In particular, it is shown that for any finitely presented group with infinite center, there are at most finitely many distinct smooth (resp. topological) 4-manifolds which...

متن کامل

Classification of Multiplicity Free Hamiltonian Actions of Complex Tori on Stein Manifolds

A Hamiltonian action of a complex torus on a symplectic complex manifold is said to be multiplicity free if a general orbit is a lagrangian submanifold. To any multiplicity free Hamiltonian action of a complex torus T ∼= (C) on a Stein manifold X we assign a certain 5-tuple consisting of a Stein manifold Y , an étale map Y → t, a set of divisors on Y and elements of H(Y, Z), H(Y, C). We show th...

متن کامل

m at h . D G ] 1 3 Se p 20 01 T 3 - fibrations on compact six - manifolds

We describe a simple way of constructing torus fibrations T 3 → X → S which degenerate canonically over a knot or link k ⊂ S. We show that the topological invariants of X can be computed algebraically from the monodromy representation of π1(S 3 \ k) on H1(T ,Z). We use this to obtain some previously unknown T fibrations S×S → S and (S×S)#(S×S)#(S×S) → S whose discriminant locus is a torus knot ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002